13 research outputs found

    The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.

    Get PDF
    A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC

    Cellular and metabolic effects of renin-angiotensin system blockade on glycogen storage disease type I nephropathy.

    Get PDF
    Glycogen Storage Disease Type I (GSDI) is an inherited disease caused by glucose-6 phosphatase (G6Pase) deficiency, leading to a loss of endogenous glucose production and severe hypoglycemia. Moreover, most GSDI patients develop a chronic kidney disease (CKD) due to lipid accumulation in the kidney. Similar to diabetic CKD, activation of renin-angiotensin system (RAS) promotes renal fibrosis in GSDI. Here, we investigated the physiological and molecular effects of RAS blockers in GSDI patients and mice. A retrospective analysis of renal function was performed in 21 GSDI patients treated with RAS blockers. Cellular and metabolic impacts of RAS blockade were analyzed in K.G6pc-/- mice characterized by G6pc1 deletion in kidneys. GSDI patients started RAS blocker treatment at a median age of 21 years and long-term treatment reduced the progression of CKD in about 50% of patients. However, CKD progressed to kidney failure in 20% of treated patients, requiring renal transplantation. In K.G6pc-/- mice, CKD was associated with an impairment of autophagy and ER stress. RAS blockade resulted in a rescue of autophagy and decreased ER stress, concomitantly with decreased fibrosis and improved renal function, but without impact on glycogen and lipid contents. In conclusion, these data confirm the partial beneficial effect of RAS blockers in the prevention of CKD in GSDI. Mechanistically, we show that these effects are linked to a reduction of cell stress, without affecting metabolism

    Implication of Netrin-1 Gain of Expression in Canine Nodal Lymphoma

    No full text
    Netrin-1 is a member of the laminin superfamily, and is known to interact with specific receptors, called dependence receptors. While upon netrin-1 binding these receptors initiate positive signaling, in absence of netrin-1, these receptors trigger apoptosis. Tumor cells can avoid apoptosis by inactivating these receptors or by gaining ligand expression. The aim of the present study was to investigate the expression of netrin-1, the ligand of dependence receptors, in canine healthy lymph nodes (LN), and in lymphomas and to evaluate efficiency of a netrin-1 interfering compound in cell cultures from canine lymphoma. Thirty-two control LN and 169 lymphomas were analyzed through immunohistochemistry. Netrin-1 was expressed in the nucleoli of lymphoid and non-lymphoid cells in controls. Acquisition of a cytoplasmic expression was present in B-cell lymphomas (23.1 % in low-grade and 50.6% in high-grade) and T-cell lymphomas (50.0 % in low-grade and 78.8 % in high-grade), with a significant difference between the high- and low-grade in B-cell lymphomas. Through flow cytometry, we showed a significant increase in netrin-1 expression in either high-grade B-cell and T-cell lymphomas (19 and 5, respectively) compared with healthy LN (5), likewise an RT-qPCR analysis demonstrated a significant increase in netrin-1 expression level in 14 samples of lymphomas compared with eight samples of healthy LN. A T-cell aggressive canine lymphoma cell line and four primary canine nodal lymphomas cell cultures were treated with a netrin-1 interfering antibody. Apoptosis by measuring caspase 3 activity was significantly increased in the cell line and viability was decreased in three of the four primary cell cultures. Together, these data suggest that netrin-1 expression is increased in lymphoma, and more specifically in high-grade lymphomas, and that netrin-1 can act as a survival factor for the neoplastic cells, and so be a therapeutic target

    Progressive development of renal cysts in glycogen storage disease type I

    No full text
    International audienceGlycogen storage disease type I (GSDI) is a rare metabolic disease due to glucose-6 phosphatase deficiency, characterized by fasting hypoglycemia. Patients also develop chronic kidney disease whose mechanisms are poorly understood. To decipher the process, we generated mice with a kidney-specific knockout of glucose-6 phosphatase (K.G6pc-/- mice) that exhibited the first signs of GSDI nephropathy after 6 months of G6pc deletion. We studied the natural course of renal deterioration in K.G6pc-/- mice for 18 months and observed the progressive deterioration of renal functions characterized by early tubular dysfunction and a later destruction of the glomerular filtration barrier. After 15 months, K.G6pc-/- mice developed tubular-glomerular fibrosis and podocyte injury, leading to the development of cysts and renal failure. On the basis of these findings, we were able to detect the development of cysts in 7 out of 32 GSDI patients, who developed advanced renal impairment. Of these 7 patients, 3 developed renal failure. In addition, no renal cysts were detected in six patients who showed early renal impairment. In conclusion, renal pathology in GSDI is characterized by progressive tubular dysfunction and the development of polycystic kidneys that probably leads to the development of irreversible renal failure in the late stages. Systematic observations of cyst development by kidney imaging should improve the evaluation of the disease's progression, independently of biochemical markers

    Loss of Pla2r1 decreases cellular senescence and age‐related alterations caused by aging and Western diets

    No full text
    International audienceCellular senescence is induced by many stresses including telomere shortening, DNA damage, oxidative, or metabolic stresses. Senescent cells are stably cell cycle arrested and they secrete many factors including cytokines and chemokines. Accumulation of senescent cells promotes many age‐related alterations and diseases. In this study, we investigated the role of the pro‐senescent phospholipase A2 receptor 1 (PLA2R1) in regulating some age‐related alterations in old mice and in mice subjected to a Western diet, whereas aged wild‐type mice displayed a decreased ability to regulate their glycemia during glucose and insulin tolerance tests, aged Pla2r1 knockout (KO) mice efficiently regulated their glycemia and displayed fewer signs of aging. Loss of Pla2r1 was also found protective against the deleterious effects of a Western diet. Moreover, these Pla2r1 KO mice were partially protected from diet‐induced senescent cell accumulation, steatosis, and fibrosis. Together these results support that Pla2r1 drives several age‐related alterations, especially in the liver, arising during aging or through a Western diet

    Targeting netrin-1/DCC interaction in diffuse large B-cell and mantle cell lymphomas

    No full text
    International audienceDCC (Deleted in Colorectal Carcinoma) has been demonstrated to constrain tumor progression by inducing apoptosis unless engaged by its ligand netrin-1. This has been shown in breast and colorectal cancers; however, this tumor suppressive function in other cancers is not established. Using a transgenic mouse model, we report here that inhibition of DCC-induced apoptosis is associated with lymphomagenesis. In human diffuse large B-cell lymphoma (DLBCL), an imbalance of the netrin-1/DCC ratio suggests a loss of DCC-induced apoptosis, either via a decrease in DCC expression in germinal center subtype or by up-regulation of netrin-1 in activated B-cell (ABC) one. Such imbalance is also observed in mantle cell lymphoma (MCL). Using a netrin-1 interfering antibody, we demonstrate both in vitro and in vivo that netrin-1 acts as a survival factor for ABC-DLBCL and MCL tumor cells. Together, these data suggest that interference with the netrin-1/DCC interaction could represent a promising therapeutic strategy in netrin-1-positive DLBCL and MC
    corecore